Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting.

نویسندگان

  • Irène Brigger
  • Jackie Morizet
  • Geneviève Aubert
  • Hélène Chacun
  • Marie-José Terrier-Lacombe
  • Patrick Couvreur
  • Gilles Vassal
چکیده

The aim of the present study was to evaluate the tumor accumulation of radiolabeled long-circulating poly(ethylene glycol) (PEG)-coated hexadecylcyanoacrylate nanospheres and non-PEG-coated hexadecylcyanoacrylate nanospheres (used as control), after intravenous injection in Fischer rats bearing intracerebrally well established 9L gliosarcoma. Both types of nanospheres showed an accumulation with a retention effect in the 9L tumor. However, long-circulating nanospheres concentrated 3.1 times higher in the gliosarcoma, compared with non-PEG-coated nanospheres. The tumor-to-brain ratio of pegylated nanospheres was found to be 11, which was in accordance with the ratios reported for other carriers tested for brain tumor targeting such as long-circulating liposomes or labels for magnetic resonance imaging. In addition, a 4- to 8-fold higher accumulation of the PEG-coated carriers was observed in normal brain regions, when compared with control nanospheres. Using a simplified pharmacokinetic model, two different mechanisms were proposed to explain this higher concentration of PEG-coated nanospheres in a tumoral brain. 1) in the 9L tumor, the preferential accumulation of pegylated nanospheres was attributable to their slower plasma clearance, relative to control nanospheres. Diffusion/convection was the proposed mechanism for extravasation of the nanospheres in the 9L interstitium, across the altered blood-brain barrier. 2) In addition, PEG-coated nanospheres displayed an affinity with the brain endothelial cells (normal brain region), which may not be considered as the result of a simple diffusion/convection process. The exact underlying mechanism of such affinity deserves further investigation, since it was observed to be as important as specific interactions described for immunoliposomes with the blood-brain barrier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expert Review Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery

The success of anti-cancer therapies largely depends on the ability of the therapeutics to reach their designated cellular and intracellular target sites, while minimizing accumulation and action at nonspecific sites. Surface modification of nanoparticulate carriers with poly(ethylene glycol) (PEG)/ poly(ethylene oxide) (PEO) has emerged as a strategy to enhance solubility of hydrophobic drugs,...

متن کامل

Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles.

Amphotericin B (AmB)/poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG) nanoparticles coated with polysorbate 80 (Tween-80) were prepared by nanoprecipitation for transport across the blood-brain barrier (BBB). The effects of Tween-80 on the size and distribution, entrapment efficiency and release behavior of AmB/PLA-b-PEG nanoparticles were investigated. Furthermore, the brain targeting and...

متن کامل

Surface-modified poly(lactide-co-glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radioisotope.

Surface-modified nanospheres can be utilized for targeting drugs and diagnostic agents to the bone and bone marrow while extending their circulation time in the blood stream. The surface modification of poly(lactide-co-glycolide) (PLGA) nanospheres by radioisotope carrying poly(ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers (Poloxamer 407) has been assessed by ...

متن کامل

Preparation and Characterization of pH-Responsive Poly(methacrylic acid-g-ethylene glycol) Nanospheres

Poly(methacrylic acid-g-ethylene glycol) (P(MAA-g-EG)) has been studied extensively in our laboratory due to its extremely promising applications in the biomedical and pharmaceutical fields. It exhibits pH-responsive interpolymer complexes that make it a promising candidate as an oral carrier for peptide and protein drug. We have developed a photoinitiated free-radical precipitation polymerizat...

متن کامل

Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures.

Microparticles or nanospheres of hydrogels of crosslinked poly(methacrylic acid) grafted with poly(ethylene glycol) as well as crosslinked poly(acrylic acid) grafted with poly(ethylene glycol) were prepared for use as oral insulin delivery carriers. The copolymer carriers were synthesized by precipitation/dispersion polymerization that led to gel nanospheres or by bulk polymerization and subseq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 303 3  شماره 

صفحات  -

تاریخ انتشار 2002